BULETINUL INSTITUTULUI POLITEHNIC DIN IAȘI Publicat de Universitatea Tehnică "Gheorghe Asachi" din Iași Volumul 67 (71), Numărul 2, 2021 Secția CHIMIE și INGINERIE CHIMICĂ

# LYCOPENE – BACKGROUND, PERSPECTIVES AND CHALLENGES IN DERMATO-COSMETIC FORMULAS

ΒY

# DELIA TURCOV<sup>1</sup>, ANCA ZBRANCA<sup>2</sup>, LĂCRĂMIOARA RUSU<sup>3</sup> and DANIELA ȘUTEU<sup>1,\*</sup>

<sup>1</sup>"Gheorghe Asachi" Technical University of Iaşi, "Cristofor Simionescu" Faculty of Chemical Engineering and Environmental Protection, Iaşi, Romania <sup>2</sup>"Grigore T.Popa" University of Medicine and Pharmacy, Faculty of Medical Bioengineering, Iaşi, Romania <sup>3</sup>"Vasile Alecsandri" University of Bacău, Faculty of Engineering, Bacău, Romania

Received: February 18, 2021 Accepted for publication: March 15, 2021

Abstract. In the dermato-cosmetic formulation, the antioxidants have gained an almost permanent place based on strong scientific arguments. The most of the antioxidant ingredients enriched formulas are intended for antiaging skincare products, even though in a wide variety of presentation forms, these have no special indications and are limited to daily skincare routine for healthy skin. Nevertheless, there is an increasing interest for antioxidant compounds also for dermatocosmetic products with medical indications for acne, rosacea, and seborrheic dermatitis. Therefore, finding new resources or fructification of any discovered source of antioxidant compounds have led to increasing the researches related to performance, stability, efficiency and quality of extraction methods. Special attention to indigenous plant resources, economical and rich in antioxidant active ingredients is as well inherent but also incipient, if we have to consider the amount of well-known but still unexploited active ingredients.

**Keywords:** antioxidant effects; dermatocosmetic products; lycopene characterization; lycopene extraction methods.

<sup>\*</sup>Corresponding author; e-mail: danasuteu67@yahoo.com

| Delia | Turcov    | et | al |
|-------|-----------|----|----|
| Dona  | 1 41 60 1 | ~~ | u  |

### **1. Introduction**

There is a series of long-established antioxidants, such as vitamin C, E, resveratrol, Q10 coenzyme used to combat and / or treat various dermatological pathologies. Combating oxidative stress is a goal taken into consideration by many specialists, and antioxidants play an extremely important role (Kumar *et al.*, 2020; Turcov *et al.*, 2020a, 2020b). New ones are gaining ground in dermatocosmetic formulas, various polyphenols or even synthetic antioxidants, such as idebenone (Fig. 1). Based on the number of antioxidants used in food supplements, there is a need for a further in-depth analyze of antioxidant potential of other similar compounds.

Lycopene is one of these potential compounds. Although it has a significant history in literature and in food supplements manufacturing, for reasons incompletely understood yet, its presence in dermatocosmetic formulas is bellow expectation suggested by its proven properties (Fernández-García *et al.*, 2012). Currently, lycopene is first-line as a coloring ingredient in food products and supplements and, secondary, as an antioxidant.

The aim of this paper is to synthesize literature data on the use of lycopene in dermatocosmetic, to evaluate extraction methods from indigenous sources and to identify barriers to the inclusion of lycopene as a top antioxidant for dermatocosmetic formulations.



Fig. 1 – The most frequently antioxidants used in the dermatocosmetic products (according to Montenegro, 2014).

#### 2. Lycopene - General Characteristics

Lycopene is a fat-soluble pigment from carotenoid group, responsible for red color of tomatoes and many fruits. It is an acyclic non-polar compound with  $C_{40}H_{56}$  formula. His structure has 11 conjugated and 2 unconjugated double bonds. Almost 95% of lycopene found in nature is in trans-isomer form, considered more stable than cis-isomer lycopene (Abreu *et al.*, 2011). In the same time, for the lycopene intake, the bioavailability is considered to be higher in cis-form than in trans-form, cis-isomers presenting a higher solubility in bile acid micelles and being easier to incorporate by chylomicrons (Urbonaviciene *et al.*, 2018). Lycopene is a lipophilic antioxidant, lipid-soluble, the predominant carotenoid found in human plasma.

Some sources rich in lycopene that can be used for its extraction is presented in Table 1.

| Tood Sources of Lycopen         |                         |                |  |
|---------------------------------|-------------------------|----------------|--|
| Source                          | Туре                    | Amount         |  |
|                                 |                         | (mg/100 g wet) |  |
|                                 |                         | weight)        |  |
| Apricots                        | fresh                   | 0.005          |  |
| Apricots                        | dried                   | 0.86           |  |
| Chilli                          | processed               | 1.08 - 2.62    |  |
| Grapefruit                      | Pink, fresh             | 3.36           |  |
| Guava (Psidium guajava)         | Pink, fresh             | 5.40           |  |
| Tomatoes                        | fresh                   | 3.1 - 7.74     |  |
| Tomatoes (Lycopersicon          | Wholed, peeld,          | 11.21          |  |
| esculentum)                     | processed               |                |  |
| Tomatoes juice                  | processed               | 7.83           |  |
| Tomatoes paste                  | canned                  | 30.07          |  |
| Ketchup                         | processed               | 16.60          |  |
| Pizza sauce                     | From pizza (not canned) | 32.89          |  |
| Salsa                           | processed               | 9.28           |  |
| Spaghetti sauce                 | processed               | 17.50          |  |
| Wattermelon (Citrullus lanatus) | Red, fresh              | 4.10           |  |

 Table 1

 Food Sources of Lycopen

#### 3. Extraction Methods of Lycopene

The highest known concentration of lycopene in lycopene-riches formulation is 30,000 - 60,000 ppm, difficult however to be safely dosed for human intake (Sabio Rey, 2005). As far as dermatocosmetic products are concerned, there are no studies developed to establish the most efficient and safe concentration for external use.

| Delia | Turcov | et | al. |
|-------|--------|----|-----|
|-------|--------|----|-----|

In traditional methods of extraction, organic solvents are used, as lycopene is apolar, but these solvents present toxicity in different levels, thus other methods, like using supercritical fluids shall be considered (Sabio Rey, 2005; Choksi and Joshi, 2007).

Modern, advanced protocols of extraction for lycopene result in higher concentration of lycopene extracted, than conventional simple solvent extraction. The most considerable amounts of lycopene are present in the outer part of pericarp (skin and seeds), while the jelly part contains mainly beta-carotene (Hussain *et al.*, 2017).

A remarkable patent which presented a great industrial application proposed a method using polar solvents (water, ethanol, polyoles) for extraction of other compounds than lycopen, crystals, present in chromoplasts, the location of lycopene in plants.

The vegetal material used for extraction are tomatoes and tomato-byproducts, among which tomatoes paste (up to 38.8%, (Hussain *et al.*, 2017)) is by far the most rich in lycopene.

Still, the maximum radical scavenging activity was determined in raw tomatoes (Hussain *et al.*, 2017).

Therefore, there are other different methods of extraction aimed to optimise the amount of lycopene obtained in safe, risk-free conditions.

| Extraction Methods of Eycopen from Vegetal Material |              |                                                             |                 |                  |
|-----------------------------------------------------|--------------|-------------------------------------------------------------|-----------------|------------------|
| Source                                              | Туре         | Extraction and<br>Analytical<br>characterization<br>methods | Amount          | References       |
| Tomato by-                                          | Peel, seeds, | HPLC-grade solvents                                         | Five times      | (Urbonaviciene   |
| products                                            | pulp         | (hexane, methanol,                                          | higher          | et al., 2018)    |
| (Lycopersicon                                       |              | methyl-t-butyl ether,                                       | lycopene        | , ,              |
| esculentum                                          |              | tetrahydrofuran,                                            | content in peel |                  |
| Mill.)                                              |              | isopropanol)                                                | > seeds, pulp   |                  |
|                                                     |              | Supercritical fluid                                         |                 |                  |
|                                                     |              | extraction with CO <sub>2</sub>                             |                 |                  |
| Tomato                                              | Fresh and    | Hydrolytic Enzyme-                                          | Increased by    | (Hussain et al., |
| products                                            | cooked for   | aided extraction                                            | 90.6 μg/g       | 2017)            |
| (paste and                                          | several      | (enzyme pectinase)                                          | (188%)          |                  |
| pulp)                                               | hours        |                                                             |                 |                  |
| Tomato peel                                         | Blended      | Enzymatic pre-                                              | 643±17 µg/g     | (Papaioannou     |
| (tomato                                             | and          | treatment and surfactant                                    |                 | and Karabelas,   |
| processing                                          | partially    | assisted extraction (3                                      |                 | 2012)            |
| waste)                                              | dehydrated   | extraction cycles)                                          |                 |                  |
| Tomato                                              | Processed    | Lipid extraction by                                         | 500-1000 ppm,   | (Sabio Rey,      |
| concentrate                                         |              | solid-liquid extraction                                     | free of organic | 2005)            |
|                                                     |              |                                                             | solvent         |                  |

 Table 2

 Extraction Methods of Lyconen from Vegetal Material

| Tomato juice   | Fresh      | Lavered double           | No                         | (Carbaial                |
|----------------|------------|--------------------------|----------------------------|--------------------------|
| 1 onnato Juneo | 110011     | hydroxides (LDHs)        | quantitative               | Arizaga <i>et al.</i>    |
|                |            | (green extraction-       | analyse                    | 2018)                    |
|                |            | inorganic compound-      | performed                  | 2010)                    |
|                |            | metal cations)           | periorinea                 |                          |
| Tomato skin    | Tomato-    | Hydrophilic and          | Lycopene                   | (El-Malah <i>et</i>      |
| and seeds      | processing | lipophilic solvents      | content higher             | $al_{2015}$              |
|                | wastes     | (distilled water ethanol | in lipophilic              | , 2010)                  |
|                | Wastes     | isopropanol ethyl        | solvents and               |                          |
|                |            | lactate ethyl acetate    | lower in                   |                          |
|                |            | n-hexane) + Microwave    | hydrophilic                |                          |
|                |            | and Illtrasound          | solvents                   |                          |
|                |            | Assisted extraction      | solvents                   |                          |
| Cherry         | Fresh      | Renzene/Methanol/Aceto   | 88 87 mg/kg /              | (Lilwani and             |
| tomato/        | 1 IC3II    | e-Ethanol-               | 74.53  mg/kg               | Nair 2015)               |
| watermelon     |            | Hexane/Acetone-          | / 1.55 mg/kg /             | run, 2015)               |
| watermeion     |            | Petroleum ether/Heyane   |                            |                          |
| Red tomatoes   | Fresh      | Illtrasound assisted     | All_trans                  | (Fh et al                |
| (Lycoparsicon  | 1 ICSII    | extraction (UAE) with    | lycopene                   | $(LII \ ei \ ui., 2012)$ |
| (Lycopersicon  |            | the aid of PSM           | $5 11\pm0.27 \text{ mg/g}$ | 2012)                    |
| M;11)          |            | (Pasponso Surface        | dry weight                 |                          |
| <i>will)</i>   |            | (Response Surface        | anhoncod by                |                          |
|                |            | Wiethodology)            | 75 020 with                |                          |
|                |            |                          | 75.95% Willi               |                          |
|                |            |                          | KSIVI compared             |                          |
|                |            |                          |                            |                          |
|                |            |                          | optimised                  |                          |
|                |            |                          | conventional               |                          |
| <b>T</b> 1     | <b>F</b> 1 | TTL 1 1                  | technology                 |                          |
| Tomato skin,   | Fresh      | Ultrasound assisted      | Extraction                 | (Luengo <i>et al.</i> ,  |
| seeds and      |            | extraction (UAE) under   | Yield                      | 2014)                    |
| part of the    |            | moderate pressure        | increased with             |                          |
| pulp           |            |                          | 143%                       |                          |
|                |            |                          | compared                   |                          |
|                | ·          |                          | with control               | <i></i>                  |
| Tomato skin    | Fresh      | Optimised separation     | 30.4 fold                  | (Liu <i>et al.</i> ,     |
|                |            | through dynamic          | increased                  | 2010)                    |
|                |            | adsorption/desorption    | lycopene                   |                          |
|                |            |                          | content in                 |                          |
|                |            |                          | lycopene                   |                          |
|                |            |                          | oleoresin                  |                          |

# 4. Mechanism of Lycopene Action

Lycopene has an acyclic molecular structure, with multiple conjugated double bonds which, additional to its high hydrophobic property manifests an antioxidant effect expressing in quenching singlet oxygen and scavenging free radicals. Moreover, after deactivating free radicals through electron transferring, the new lycopene radical formed is stable due to the same large

13

number of double carbon bonds, and can be further stabilized by resonance (Sabio Rey, 2005).

On the other hand, its unsaturated structure makes lycopene instable to certain reaction like oxidation or to heat and light. Therefore, its important antioxidant activity is strongly diminished in these specific conditions.

Lycopene's antioxidant action is exerted through:

• Quenching singlet oxygen (the most dangerous RO species generated in the skin as a consequence of UV exposure (Caramori Cefali *et al.*, 2015). Lycopene capacity of quenching singlet oxygen is twice that of  $\beta$ -carotene and ten times higher than that of  $\alpha$ -tocopherol.

- Scavenge free radicals
- Prevent formation of free radicals
- Electron transfer
- Hydrogen atom transfer (Fig. 2)

| Lycopene + R $\longrightarrow$ Lycopene] <sup>+</sup> + R <sup>-</sup> (electron transfer) |
|--------------------------------------------------------------------------------------------|
| Lycopene + R Lycopene <sup>-</sup> + RH (allylic hydrogen abstraction                      |
| Lycopene + R $\longrightarrow$ [R. Lycopene] (radical addition)                            |

Fig. 2 – Lycopene's antioxidant mechanism (Kaur and Kaur, 2015).

Studies show some important effects of lycopene involvement:

• Modulating growth factors (insulin like growth factor 1 (IGF-1), vascular endothelia growth factor (VEGF), epidermal growth factor (EGF), platelet derived growth factor (PDGF) (with key anti-tumor role))

• Signaling pathways (androgen pathway, cytokine pathway (IL-4, IL-6), growth factor)

There are also presented non-oxidative mechanism of lycopene (Sgherri *et al.*, 2015):

- Gap junction communication
- Cell cycle regulation
- Modulation of gene expression
- Improvement of hormone and immune response

## **5.** Biological Effects of Lycopene

Lycopene has no pro-vitamin A activity, owing to the absence of the  $\beta$ ionone ring at the end of its structure, but it is considered to have the highest scavenging capacity of singlet oxygen, among the main carotenoids found in human plasma (like  $\alpha$ -carotene,  $\beta$ -carotene,  $\beta$ -cryptoxanthin, lutein, zeaxanthin), reducing the rate of free radicals. This activity stands as an evidence of the strong antioxidant activity, which is associated with the contribution in preventing or treatment in different pathologies.

Existing studies show different types of involvement in various oxidative stress-related diseases, as shown in the Table 3.

| Type of        | Pathology          | Suggested biochemical             | References               |
|----------------|--------------------|-----------------------------------|--------------------------|
| participation  |                    | mechanism of action               |                          |
| Reduce         | Esophageal,        | Prevent or minimise the effect of | (Kaur and Kaur,          |
| occurrence     | gastric, prostate, | free radicals                     | 2015)                    |
|                | lung cancer        |                                   |                          |
| Assist in the  | Pancreatic, colon, | Modulating the epigenome, Gene    | (Sgherri <i>et al.</i> , |
| treatment      | rectum, breast,    | function regulation (reversing    | 2015)                    |
|                | endometrial, lung  | abnormal gene activation          |                          |
|                | cancer, ieukaemia  | Antimetastatic activity           |                          |
|                |                    | Anontosis Cell-cycle arrest       |                          |
|                |                    | Cell-Cell communication and       |                          |
|                |                    | progression Carcinogen            |                          |
|                |                    | metabolism                        |                          |
| Reduce risk    | Myocardial         | Barrier against LDL (low density  | (Kaur and Kaur,          |
|                | infarction         | lipoprotein) oxidation            | 2015)                    |
| Male           | Reproductive       | Reduce lipid peroxidation,        |                          |
| infertility    | system             | Improve sperm quality             |                          |
|                |                    | (concentration, motility,         |                          |
|                |                    | morphology), Protects the         |                          |
|                |                    | viability, osmotic resistance and |                          |
|                |                    | DNA integrity during              |                          |
|                | D' I               | cryopreservation                  |                          |
| Prevents       | Diabetes           | ACE (Angitensin Cinverting        |                          |
| insulin        |                    | Enzyme) inhibitor in vitro        |                          |
| resistance and |                    | studies, infibits MDA-LDL         |                          |
| acentions      |                    | uptaka by magrophaga              |                          |
| Bone health    | Osteoporosis       | Decreases serum Ca. P. alkaline   |                          |
| Done nearth    | bone tumour        | phosphatise (AIP) and II-6        |                          |
|                | ioint              | concentration Enhances serum      |                          |
|                | inflammatory       | estrogen level, bone mineral      |                          |
|                | disease            | density, bone mineral content.    |                          |
| Prevention     | Neurodegenerative  | Prevents neuro-inflammation and   | (Butnariu and            |
|                | diseases           | cognitive impairment, Enhances    | Giuchici, 2011)          |
|                |                    | activity of superoxide dismutase  |                          |
|                |                    | and glutathione                   |                          |
| Prevention     | Prevents           | Counteract lipid oxidation        | (Stoica et al.,          |
|                | Atherosclerosis    |                                   | 2018; Dasgupta           |
|                | and Blindness      |                                   | and Klein, 2014)         |

Table 3Biological Effects of Lycopene

```
Delia Turcov et al.
```

| Anti-UV<br>damage<br>Protection, | Skin disorders<br>(infections,<br>seborrheic | Antimicrobial, anti-inflammatory action, Enhance regeneration, | (Dasgupta and<br>Klein, 2014;<br>Petyaev <i>et al.</i> ,<br>2010) |
|----------------------------------|----------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------------------|
| support<br>healing               | dermatitis)                                  |                                                                | 2019)                                                             |

Despite such observations, molecular mechanism in some of the pathologies above are not fully understood. Moreover, significant lower risk of tumors, diabetes or bone diseases is shown to be in associating lycopene with vitamin E, selenium, chlorophyll or other compounds, rather than administration of one antioxidant alone (Kaur and Kaur, 2015; Sgherri, *et al.*, 2015).

# 6. Lycopene in Dermato-Cosmetics

The presence of lycopene in dermato-cosmetic formulation is still an aspiration, while in cosmetic and beauty products is poor, both under existing products and research topic of interest as well. If we consider the large number of lycopene-based food supplements, we can easily assume that the beneficial biological effects of lycopene, proven or suggested, are convincing enough and certainly compelling for pharma industry. However, the idea of including it in cosmetic or dermato-cosmetic formulas is rarely but continuingly explored and some experimental formulas are analyzed (Table 4).

| Experimental Studies Evaluating Excopene for Topical Use |                                         |                                              |                                                                                                                                                                                                                |                                              |  |
|----------------------------------------------------------|-----------------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|--|
| Assay type                                               | Objective                               | Lycopene                                     | Result                                                                                                                                                                                                         | References                                   |  |
|                                                          |                                         | concentration                                |                                                                                                                                                                                                                |                                              |  |
| Emulsion new<br>formula                                  | Combating<br>skin aging<br>acceleration | 0.58 mg/100 g<br>sample of<br>phyto-cosmetic | Promising<br>antiaging<br>product (Stable,<br>safe,<br>biocompatible<br>product,<br>cumulative<br>effect on<br>lycopene<br>concentration<br>in the skin),<br>Sensitive in<br>indirect/direct<br>light and high | (Caramori<br>Cefali <i>et al.</i> ,<br>2015) |  |
|                                                          |                                         |                                              | temperature                                                                                                                                                                                                    |                                              |  |
| Correlation                                              | Establish                               | 0.0055-0.021                                 | Lycopene is                                                                                                                                                                                                    | (Darvin et                                   |  |
| between                                                  | lycopene                                | detection                                    | expected to be                                                                                                                                                                                                 | al., 2008)                                   |  |

 Table 4

 Experimental Studies Evaluating Lycopene for Topical Use

16

| lycopene      | involvement in | through                   | an efficient                  |            |
|---------------|----------------|---------------------------|-------------------------------|------------|
| cutaneous     | maintaining    | resonance                 | protective                    |            |
| concentration | skin smooth    | Raman                     | compound                      |            |
| and skin      | texture        | spectroscopic             | against                       |            |
| roughness     |                | measurements,             | negative action               |            |
| _             |                | on an 0.33cm <sup>2</sup> | of free radicals              |            |
|               |                | skin surface              | in the skin                   |            |
|               |                | structure                 |                               |            |
| Hyaluronidase | Comparative    | Measurements              | Higher                        | (Djohab et |
| inhibition    | measurements   | for                       | antiaging                     | al., 2019) |
| evaluation,   | reported to    | concentrations            | activity than                 |            |
|               | Solanum        | between 5.21-             | Solanum                       |            |
|               | Lycopersicum   | 166.67 μg/mL,             | Lycopersicum                  |            |
|               | L. extract     | both for lycopene         | L. extract                    |            |
|               |                | as for Solanum            |                               |            |
|               |                | Lycopersicum L.           |                               |            |
|               |                | extract                   |                               |            |
| Lycopene      | Evaluating the | Good                      | Obtaining and                 | (Butnariu  |
| antioxidant   | "harmlessness" | tolerability and          | characterization              | and        |
| like a        | of propolis-   | effectiveness of          | a nanoemulsions               | Giuchici,  |
| nanoemulsion  | lycopene       | product, good             | based on                      | 2011)      |
| component     | association    | compliance,               | lycopene and                  |            |
|               |                | Reduction in              | propolis: (20-                |            |
|               |                | collagenase               | 35)% lycopene +               |            |
|               |                | activity                  | (27-35)%                      |            |
|               |                |                           | propolis + (53-               |            |
|               |                |                           | 30)% H <sub>2</sub> O (v / v) |            |

In cosmetic products lycopene has an antioxidant role. Another experimental formulation present new concepts for encapsulating lycopene in new more stable and better absorbed products (Butnariu and Giuchici, 2011) (Table 5).

Table 5

| Presentation | ı Forms o | f Lvcopene | Based | Cosmetic Prod | ucts |
|--------------|-----------|------------|-------|---------------|------|
|              |           |            |       |               |      |

| Main ingredients                                                                           | Presentation form | Indications                                                                 |
|--------------------------------------------------------------------------------------------|-------------------|-----------------------------------------------------------------------------|
| Calendula, lycopene,<br>papaya enzymes                                                     | Gel mask          | Hydration, antiaging,<br>exfoliation                                        |
| Aloe, Vitamin E, C, β-<br>carotene, lutein,<br>lycopene, zeaxanthin,<br>CoQ10, astaxanthin | Cream             | Anti (stress,<br>environmental aging,<br>wrinkles, UV damage)<br>protection |
| Tomato extract<br>(lycopene), sea berry oil,<br>camellia seed oil                          | Oil               | Antioxidant booster                                                         |

Delia Turcov et al.

| Vitamin A. C, K,<br>lycopene                | Soap bar                                                                          | Oily, sensitive, acne prone<br>skin                      |  |
|---------------------------------------------|-----------------------------------------------------------------------------------|----------------------------------------------------------|--|
| Vitamins, plant extracts (including tomato) | Gel                                                                               | Dehydrated, oily blemished-skin                          |  |
| Aqueous micro<br>dispersed-lycopene         | Skincare range of<br>products (cream, gel,<br>serum, men's<br>moisturiser, scrub) | Hydration, renewing,<br>protection                       |  |
| Lycopene applied to cosmetic beauty line    | Cream, balm, essence,<br>shampoo, soap, serum                                     | Full body daily skin care,<br>all skin type              |  |
| Organic lycopene based<br>products          | All types of face and<br>body products                                            | Daily routine and<br>treatments (anti-acne,<br>peelings) |  |
| Others                                      | Foam scrub, lotions, lipsticks, cleansers,                                        | Daily care, Beauty, Face<br>and body                     |  |

# 7. Challenges in the Use of Lycopene in Dermatocosmetic Products

Lycopene is sensitive to heat, oxidation and light, like other carotenoids, due to its unsaturated chemical structure (Choksi and Joshi, 2007; Tang *et al*, 2015; Djohab *et al.*, 2019). Experimental formulation showed that special nano liposome-encapsulated lycopene represents a protected form with higher antioxidant activity than free lycopene (Stojiljkovic *et al.*, 2018).

Furthermore, oral administration has its challenges: the classical dosage issue and using the right form: although the most (95%) lycopene in tomatoes is all-trans and the most stable form, the cis-isomer is the most bioavailable (key property linked to optimum absorption, metabolism, transport and tissue distribution, bioactivity), *in vitro* and *in vivo* (the higher solubility of *cis*-isomers in bile acid micelles and the facile incorporation chylomicrons are probable explanations) (Urbonaviciene *et al.*, 2018).

# 8. Conclusions

Lycopene is scientifically proven an effective antioxidant with numerous biological benefits. The extraction resources are notoriously rich and extremely accessible. Nevertheless, lycopene as an ingredient for topical use in dermato-cosmetic formulation is considered under-explored (Caramori Cefali *et al.*, 2015).

Still, in recent years, several manufacturing companies have been developing new, attractive and promising range of products, consisting in extremely wide variety of presentation forms, textures, formulations and benefits. Among all these, no dermato-cosmetic formula, only cosmetics.

18

These findings support the idea of continuing researches in order to provide solutions to current dilemmas: ways to improve stability, more affordable pure lycopene, the most effective combination of formulas.

#### REFERENCES

- Abreu W.C., De Fatima M., Barcelos P., da Silva E.P., de Barros E.V., Boas E.V., Physical and Chemical Charcateristics of Lycopene Retention of Dried Tomatoes Subjected to Different Pre-Treatments, Revista Do Instituto Adolfo Lutz, 70, 2, 168-174 (2011).
- Butnariu M.V., Giuchici C.V., The Use of Some Nanoemulsions Based on Aqueous Propolis and Lycopene Extract in the Skin's Protective Mechanisms Against UVA Radiation, Journal of Nanobiotechnology, 9, 1-9 (2011).
- Carbajal Arizaga G.G., Magallon A.P., Hernandez D.E., *Green Extraction of Lycopene* from Tomato Juice with Layered Double Hydroxide Nanoparticles, Micro & Nano Letters, **14**, *3*, 230-233, doi: 10.1049/mnl.2018.5437 (2018).
- Caramori Cefali L., Souza-Moreira T.M., Correa M.A., Nunes Salgado H.R., Borges Isaac V.L., *Development and Evaluation of an Emulsion Containing Lycopene for Combating Acceleration of Skin Aging*, Pharmaceutical Sciences, **51**, *3*, 579-590, dx.doi.org/10.1590/S1984-82502015000300010 (2015).
- Choksi P.M., Joshi V.Y., A Review on Lycopene-Extraction, Purification, Stability and Applications, International Journal of Food Properties, **10**, 289-298, doi:10.1080/10942910601052699 (2007).
- Darvin M., Patzelt A., Gehse S., Schanzer S., Benderoth C., Sterry W., Lademann J., *Cutaneous Concentration of Lycopene Correlates Significantly with the Roughness of the Skin*, European Journal of Pharmaceutics and Biopharmaceutics, **69**, 943-947 (2008).
- Dasgupta A., Klein K., Combating Oxidative Stress with a Healthy Lifestyle, in Antioxidants in Food, Vitamins and Supplements, Dasgupta A. and Klein K. (Eds.), Elsevier. Inc., 317-333, https://doi.org/10.1016/B978-0-12-405872-9.00016-1 (2014).
- Djohab K., Henderson A.H., Ehrich Lister I.N., Girsang E., Fachrial E., Comparison of Atioxidant and Anti-hyaluronidase Activity of Tomato (Solanum Lycopersicum L.) Extract and Lycopene, American Scientific Research Journal for Engineering, Technology and Science, 52, 1, 49-56 (2019).
- El-Malah M.H., Hassanein M.M.M., Areif M.H., Al-Amrousi E.F., Utilization of Egyptian Tomato Waste of a Potential Source of Natural Antioxidants Using Solvents, Microwave and Ultrasound Extraction Method, American Journal of Food Technology, 10, 1,14-25, doi:10.3923/ajft.2015.14.25 (2015).
- Eh A.L.-S., Teoh S.-G., Novel Modified Ultrasonication Technique for the Extraction of Lycopene from Tomatoes, Ultrasonics Sonochemistry, 19, 151-159, doi: 10.1016/j.ultsonch.2011.05.019 (2012).

| Delia | Turcov | et | a |
|-------|--------|----|---|
|-------|--------|----|---|

- Fernández-García E., Carvajal-Lérida I., Jarén-Galán M., Garrido-Fernández J., Pérez-Gálvez A., Hornero-Méndez D., Carotenoids Bioavailability from Foods: from Plant Pigments to Efficient Biological Activities, Food Research International, 46, 2, 438-450, https://doi.org/10.1016/j.foodres.2011.06.007 (2012).
- Hussain M.B., Ahmad R.S., Waheed M., Rehman T.U., Majeed M., Khan M.U., Shariati M.A., Plygun S.A., Glinushkin A.P., *Extraction and Characterization* of Lycopene from Tomato and Tomato Products, Russian Journal of Agricultural and Socio-Economic Sciences, 3, 63, 195-202, doi.org/10.18551/rjoas.2017-03.24 (2017).
- Kaur P., Kaur J., A Potential Role of Lycopene as Antioxidant and Implications for Human Health and Disease, Nova Science Publishers, Inc. (2015).
- Kumar H., Bhardwaj K., Nepovimova E., Kuča K., Dhanjal D.S., Bhardwaj S., Bhatia S.K., Verma R., Kumar D., Antioxidant Functionalized Nanoparticles: A Combat Against Oxidative Stress, Nanomaterials, 10, 7, 1334-1360 (2020).
- Lilwani S., Nair V., *Extraction and Isolation of Lycopene from Various Natural Sources*, Journal of Biotechnology and Biochemistry, **1**, *5*, 49-51 (2015).
- Liu Y., Liu J., Chen X., Liu Y., Di D., Preparative Separation and Purification of Lycopene from Tomato Skins Extracts by Macroporous Adsorption Resins, Food Chemistry, 123, 1027-1034, doi: 10.1016/j.foodchem.2010.05.055 (2010).
- Luengo E., Condon-Abanto S., Condon S., Alvarez I., Raso J., Improving the Extraction of Carotenoids from Tomato Waste by Application of Ultrasound under Pressure, Separation and Purification Technology, 136, 130-136, doi: 10.1016/j.seppur.2014.09.008 (2014).
- Montenegro L., *Nanocarriers for Skin Delivery of Cosmetic Antioxidants*, Journal of Pharmacy & Pharmacognosy Research, **2**, *4*, 73-92 (2014).
- Papaioannou E.H., Karabelas A.J., Papaioannou E.H., Karabelas A.J., Lycopene Recovery from Tomato Peel under Mild Conditions Assisted by Enzymatic Pre-Treatment and Non-Ionic Surfactants, Acta Biochimica Polonica, **59**, 1, 71-74 (2012).
- Petyaev I.M., Pristensky D.V., Morgunova E.Y., Zigangirova N.A., Tsibezov V.V., Chalyk N.E., Klochkov V.A., Blinova V.V., Bogdanova T.M., Iljin A.A., Sulkovskaya L.S., Chernyshova M.P., Lozbiakova M.V., Kyle N.H., Bashmakov Y.K., Lycopene Presence in Facial Skin Corneocytes and Sebum and its Association with Circulating Lycopene Isomer Profile: Effects of Age and Dietary Supplementation, Food Science & Nutrition, 7, 4, 1157-1165 (2019).
- Sabio Rey E., EP 1 886 719 A1, European Patent Application (2005).
- Sgherri C., Perez-Lopez U., Pinzino C., Antioxidant Properties of Food Products Containing Lycopene are Increased by the Presence of Chlorophyll, in Lycopene – Food Sources, Potential Role in Human Health and Antioxidant Effects, J.R. Bailey (Ed.), Nova Science Publishers, Inc. New York, 39-89, (2015).
- Stoica R.M., Tomulescu C., Casarica A., Soare-Vladu M.-G., Tomato by-Products as a Source of Natural Antioxidants for Pharmaceutical and Food Industries – A Mini-Review, Scientific Bulletin. Series F. Biotechnologies, XXII, 2285-1372 (2018).

- Stojiljkovic N., Ilic S., Jakovljevic V., Stojanovic N., Stojnev S., Kocic H., Stojanovic M., Kocic G., *The Encapsulation of Lycopene in Nanoliposomes Enhances its Protective Potential in Methotrexate-Induced Kidney Injury Model*, Oxidative Medicine and Cellular Longevity, doi.org/10.1155/2018/2627917 (2018).
- Tang Z.-X., Wu C.-E., Shi L.-E., Use of Encapsulation Technology for Improving the Stability of Lycopene, in Lycopene – Food Sources, Potential Role in Human Health and Antioxidant Effects (Bailey J.R. Ed.), Nova Science Publisher, Series Food Science and Technology, 115-141 (2015).
- Turcov D., Zbranca A., Horciu L.I., Suteu D., *Resveratrol in the Prevention and Treatment of Oxidative Stress*, Bul. Inst. Polit Iași, **66 (70)**, 2, 55-65 (2020a).
- Turcov D., Rusu L., Zbranca A., Suteu D., New Dermatocosmetic Formulations Using Bioactive Compounds from Indigenous Natural Sources, Bul. Inst. Polit Iaşi, 66 (70), 2, 67-76 (2020b).
- Urbonaviciene D., Bobinaite R., Trumbeckaite S., Raudone L., Janulis V., Bobinas C., Viskelis P., Agro-Industrial Tomatoes by-Products and Extraction of Functional Food Ingredients, *Zemdirbyste-Agriculture*, **105**, *1*, 63-70, doi: 10.13080/z-a.2018.105.0092018 (2018).

#### LICOPEN – BACKGROUND, PERSPECTIVE ȘI PROVOCĂRI ÎN FORMULELE DERMATO-COSMETICE

### (Rezumat)

În formulele dermato-cosmetice, antioxidanții și-au câștigat un loc aproape permanent, cu puternice argumente științifice. Cele mai multe formule ce conțin antioxidanți sunt dedicate îngrijirii anti-aging, iar produsele, deși într-o mare varietate de forme de prezentare, nu au indicații speciale și se limitează la îngrijirea de rutină a pielii sănătoase.

Totuși, există un interes în creștere pentru compuși naturali cu acțiune antioxidantă și pentru produse cu indicații medicale cum sunt acneea, rozaceea, dermatita seboreica. Astfel, găsirea unor noi resurse și fructificarea oricărei surse de ingrediente antioxidante au dus la creșterea numărului de studii ce vizează performanța, stabilitatea, eficiența și calitatea metodelor de extracție.

Atenția specială asupra resurselor vegetale indigene, avantajoase și bogate în ingrediente active antioxidante este pe cât de firească pe atât de incipientă, dacă ne gândim la cantitatea disponibilă de ingrediente active cunoscute dar neexploatate.